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A number of studies [1-6] have presented data on electromagnetic effects accompanying 
dynamic loading of metals. In [1-5] the development, of electrical signals was related to 
the electron-inertial effects (see, for example, [7]). 

The present study will derive an equation which relates the electric field intensity to 
the current density in a metal undergoing dynamic deformation. This equation is then used to 
analyze electromagnetic effects and evaluate such effects numerically for the case of shock 
loading of metal bars. 

To describe the dynamics of the metal's electron gas in the deformation wave we use 
linearized hydrodynamic equations. This approximation is valid under conditions with domi- 
nating collisions where local equilibrium exists [8], which can be expressed by the inequali- 
ties 

~ < dvF; (i) 

~% ~ i ,  (2) 

where ~ is the deformation wave harmonic frequency; r is the electron momentum relaxation 
time; s, deformation wave velocity; VF, Fermi electron velocity; T~, electron energy relaxa- 
tion time. 

For metals, condition (i) is usually the more severe one. In as~uch as for typical 
metals s ~ 5-105 cm/sec, v F ~ 108 cm/sec, r ~ 10 -13 sec, it follows If~rom Eq. (i) that ~ << 
5,10 I~ sec -I 

Because of the linerity of the equations used, this same condition extends to the elec- 
tromagnetic field frequency. It is thus obvious that the approximation being used encompasses 
practically the entire radio spectrum. 

The ionic lattice deformation wave is assumed to be a known function of coordinate and 
time. 

We write the equation of conservation of electron gas momentum density in a coordinate 
system fixed to the lattice: 
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where m is the effective electron mass; ne, electron concentration; u', mass velocity of 
electron gas in the coordinate system fixed to the lattice; --e, charge on an electron; 
E, intensity vector of the electric field produced by separation of charges in the deformation 
wave (if necessary this quantity can also consider an external electric field); SF, Fermi 
energy; mo, mass of the free electron; V, mass velocity of ions. 

It is well known that the noninertial nature of a reference frame is equivalent to the 
presence of some gravitational field. The gravitational mass of a metal electron, in con- 
trast to its inert effective mass, is equal to the mass of a free electron. The last term 
on the right side of Eq. (3) considers "gravitational" forces produced by the noninertial na- 
ture of the reference frame chosen (see, for example, [9]). 

The term inversely proportional to relaxation time considers dissipative forces. Forces 
proportional to the concentration gradient are generated by the dependence of chemical poten- 
tial on electron gas density (piezogalvanic effect [i0]). 
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It is obvious that if necessary the right side of Eq. (3) can consider forces produced 
by a magnetic field, temperature gradient, high-frequency phonon flux, etc. 

Transforming Eq. (3) to the laboratory reference frame, in the linear approximation we 
obtain 
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where u = u' + V is the mass velocity of the electron gas in the laboratory reference frame; 
no is the unperturbed ion and electron density. 

Expressing the mass velocity in terms of the current density and using Maxwell's equa- 
tions, after various transformations we obtain from Eq. (4) to the accuracy of terms of order 
~TVF/S << i the desired equation 

( '~  ~Z'~graddiv)j=a~ ( E ~ E ~  (5) 

m 0 0V 2eF 
where Eo.-- 7 ~ - ~  gradnI are lateral forces produced by the deformation wave, with the first 

term corresponding to the electron-inertial effect and the second to the piezogalvanic; ~ is 
the conductivity of the metal; n I is the ion density. 

3 s 2 
We note that at ~<~-~7 'i0s sec -~ Eq. (5) reduces to Ohm's law with consideration of 

lateral forces: j = o(E + Eo). 

In the case of the experimental conditions of Stuart and Tolmen from symmetry we have 
div j = 0, grad n I = 0, E = 0. Then we obtain from Eq. (5) 

j=o  V, 
e 8t 

which is in agreement with classical results (see, for example, [7]). 

We will consider longitudinal deformation of a one-dimensional bar. 
of equations defining current and electric field then has the form 

at 3 ~x ~ ] = (~ v V,  Ot "2 3 m, o 

Op/a t -~  O]/Ox = 0, OE/Ox = 4up, E = --oq~/Ox, 

The complete system 

(6) 

where p is the electric charge density; ~ is the electrical potential. 

Combining the equations of system (6), we find 

7=T.~ 
"0 

w 

We will now estimate the order of magnitude of ~and j. If ~F ~ 5"10-~2 erg, (n I- no)/ 
no ~ 10 -2 , V ~ 5"i03 cm/sec, ~ ~ 6"I0 s sec -I, we obtain j ~ 10 -9 A/cm 2, ~ ~ 30 ~. 

It is obvious that the contribution to current from the piezogalvanic effect is approxi- 
mately (VF/S) 2 ~ I05 times larger than the contribution of the electron-inertial effect. 

The low value of current density is fully understandable, since in view of the electri- 
cally closed geometry of the specimen (in contrast to the Stuart--Tolmien experiment) the appear- 
ance of current in the deformation wave leads to development of volume electrical charges, 
which generate large counter forces which was not considered in [1-5] (see, for example, the 
definition of current, Eq. (i) in [2] or Eq. (2) of [3]). The current pulse parameters pre- 
sented in [1-5] (amplitude I ~ 10 -3 A, duration T I ~ i0 ~sec) are inexplicable. In this case 
in portions of the bar located on opposite sides of the plane of the inductive sensor charges 
Q ~ IT I ~ i0 -a C should develop. Estimating the value of the electric field intensity cor- 
responding to such electrical charges, with the assumption that the charges are located at a 
distance of a deformation wavelength k ~ 5 cm, we obtain an electric field intensity E 
Q/k 2 ~ i0 s V/cm, inexplicably high for the experimental conditions. 

One possible cause of the signals recorded by the sensors in [3-5] might be the magneto- 
striction effect, produced by mechanical perturbations of the inductive sensor cores. 
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In particular, [6] presented results of experiments on study of the electromagnetic field 
near a duralumin bar along which a deformation wave propagates. The results presented (sig- 
nals from a rod antenna of mV amplitude level at an antenna-bar spacing of several cm) agree 
in order of magnitude with our estimates. However, we cannot agree with the authors of [6] 
that the signals recorded were radiation pulses. Bivin et al. [6] properly concluded that 
the electromagnetic field amplitude of the radiation decays at large distances as i/r, where 
r is the distance to the radiation source. However, such distances must be large not only in 
comparison to the dimensions of the radiating system, but also as compared to the electro- 
magnetic wavelength itself. This region of the electromagnetic field is referred to as the 
wave or far zone [II]. For the frequencies of ~i04 Hz indicated, the wave zone is realized 
at distances of>f 3"10 ~ m. In [6] the distances were ~i0 cm. Therefore the field intensity 
inversely proportiopal to distance indicated in [6] (like the field polarization) is not evi- 
dence that the pulses recorded were produced by a radiation field. In our opinion, upon im- 
pulsive loading of a metal bar the most marked effect is the development of volume charges 
and a corresponding potential electric field. The current in the deformed specimen (in the 
absence of an electrically closed circuit) and the corresponding magnetic field should be 

quite weak. 

Thus, Eq. (5) (with other lateral forces included if necessary) together with Maxwell's 
equations forms a closed system (if the deformation wave structure is known), suitable for 
describimg electromagnetic effects in the radio wavelength range which accompany dynamic de- 
formation of metals. The main contribution to the electromagnetic field is produced by the 
piezogalvanic effect. 
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